
4336 

alcohol-O-d to the extent that any resultant conclusions re­
garding anion stabilities based on its assumed absence may be 
erroneous. Secondly, and as a corollary, unless evidence es­
tablishing the absence of internal return is obtained, the der­
ivation of anion stabilities from exchange rate data on any 
other sulfoxide is unwarranted. Fortunately, based on the re­
cent studies of Cram and co-workers,21 one can test for internal 
return, at least qualitatively, by examining the effects of adding 
crown ether on the rates of proton exchange. Such a test should 
be routinely applied to isotopic exchange studies. 
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Intramolecular Hydrolysis of a Methyl Ester by 
Substrate Bound Metal Hydroxide 

Sir: 

The role of the metal ion in the mechanism of hydrolytic 
metalloenzymes continues to receive much attention. Interest 
in the role of metal bound hydroxides as nucleophiles has been 
stimulated by recent communications concerning the ability 
of these species to add to carbonyl compounds1 and to effect 
the hydrolysis of carboxylic acid anhydrides.2 An ideal model 
for a metallohydrate centered acyl transferase would be one 
that directed the attack of the metal bound hydroxyl group in 
either an intramolecular or an intracomplex reaction, involved 
the hydrolysis of an acyl function with a poor leaving group 
(aliphatic carboxylic acid ester or amide), and would allow the 
determination of all kinetic and thermodynamic constants. In 

V=VCO2CH3 

M(OH2) + 
HN .N 

+2H* 

COXH1, 
OH 

PZ1(ImH+)G.! 
ptf2(-OH)9.6 
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pKa (CO2H) 3.2 
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Figure 1. pH dependence of the apparent dissociation constant (A âpp) of 
metal complexes of ester I. The solid curves represent the best fit of eq 5 
to the experimental data. 
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this communica t ion we report the successful s tudy of such a 
model. 

Hydrolysis of I3 (eq 1 ) has been investigated as a function 
of p H and meta l ion concentrat ion. Our exper imental results 
find quanti tat ive expression in the reactions of Scheme I. The 
values of the determined constants at 30° in H2O at /x = 0.2 
( N a C l O 4 ) are: pKx{Co2+) = 9.4, p K x ( N i 2 + ) = 9.4; log 
K1n(Co2+) = 5.42, log Km(f<i2+) = 4.85; P K 3 ( C o 2 + ) = 9.6; 
P ^ 3 ( N i 2 + ) = 9.6; K e q ( C o 2 + ) = 14.0, K e q ( N i 2 + ) = 2.0; 
A: r(Co2+) = 1.05 m i n - 1 , ^1-(Ni2 +) = 0.60 min - 1 . A description 
of the means by which the various constants were obtained and 
justif ication for the proposal t ha t a s table t e t rahedra l inter­
media te occurs along the reaction path follow. 

The the rmodynamic constants of eq a to d (Scheme I) can 
be determined titrimetrically4 since proton transport and metal 
ion complexat ion are rapid compared to the hydrolytic steps 
of reaction e. The complexat ion of I with metal ions is evi­
denced by a lowering of the pK of the phenolic hydroxyl which 
may be quantitatively monitored at 292 nm (an isosbestic point 
for ionization of the imidazolyl group) . The p H dependent 
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Figure 2. Left Panel: pH-rate profile for the hydrolysis of ester I in the 
presence of Co2+, Ni2 + , and the O H - catalyzed reaction. The arrows on 
the pH ordinate show the kinetically determined pA" for Co(H20) and 
Ni(F^O), as well as the thermodynamic pA^. Right Panel: pH dependence 
of the kinetically determined dissociation constant of metal complexes of 
ester I: (D) Co2+, ( • ) Ni2+. Solid lines labeled Co(K) and Ni(K) repre­
sent the fit of eq 8 to the data. Dotted lines labeled Co(T) and Ni(T) 
represent the best fit of the data in Figure 1 to eq 5. 

dissociation constant of the metal-substrate complex (Kapp) 
is defined as in eq 2 

_ [M7][E] 

[E-M] 

( [ M J ] = total metal concentration, [E] = concentration of 
total uncomplexed I, and [E-M] = concentration of complexed 
I). Since [ M T ] » [I], one is justified in equating free metal ion 
with [M 7 ] . ([I] = 1.25 X 10-5 M, [M7] = 1 X 10~4 to 1 X 
1O -3 M). Kapp was determined in two ways which gave ex­
cellent agreement. (1) By monitoring the change in ^292 upon 
addition of increments of metal perchlorates at constant pH, 
a = [E-M]/ [E + E-M] was determined. A plot of \/a vs. 
1 / [ M 7 ] (see eq 3) gives Kipp as the slope. 

K app — (2) 

L i + 
a 

K: apx. 
[M7 

(3) 

(2) Alternatively, a was determined as a function of pH at 
constant metal ion concentration; since 1 — a = [(E)]/([E] 
4- [E-M]), eq 2 becomes eq 4. 

log Kapp = log [M7] - log • (4) 

According to reactions a to d of Scheme I, the dependence of 
Kapp on pH is given by eq 5. 

log Kapp = log Km - pH + log ( l + ^- + ^ ) 
\ K] a\\l 

+ log ( l + ^ ) - l og ( l + ^ ) (5) 
\ aH/ \ awl 

The fit of experimental data, obtained by iteration in Km and 
Ki to eq 5 is shown in Figure 1. 

Conversion of I —»• Ha was followed spectrophotometrically 
(335 nm formation of Ha or 285.5 nm disappearance of I) at 
various pH's and metal ion concentrations; ([I] = 6.25 X 1O-6 

M, [M7] = 5 X 1O-5 to 1 X 1O-3 M) first-order kinetics were 
observed for at least 2-3 half-lives. The rate constant (&app) 
increased with increasing metal concentration until saturation 
of substrate by metal ion. Plots of l/kapp vs. 1 / [M7] at each 
pH investigated were linear and gave 1 //c0bsd as the intercept 
at 1/[M7] = O while the intercept on the - 1 / [ M 7 ] axis pro­
vided the kinetically determined metal substrate dissociation 
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constant (A^pp). Plots of log &0bsd vs. pH in the presence of 
Co2+ or Ni2+ and for the O H - catalyzed reaction in the ab­
sence of metal (£OH =1.63 min- 1 M - 1 ) are shown in Figure 
2. The metal ion data were fit to eq 6 using k = 0.98 min-1, 
pK3' = 8.4 for Co2+, and k = 0.4 min-', pK3' = 9.1 for 
Ni2+. 

*obsd — & 
K3 

K3' + «H 
(6) 

The fact that pK3 is less than pK3 allows distinction to be made 
between attack of the substrate bound metal-hydroxide 
(Scheme I) and the apparently identical kinetic mechanism 
which involves attack of external O H - on the carbonyl group 
activated by the bound metal.6 

A stable tetrahedral intermediate along the reaction path 
(Scheme I) could account for the fact that pK3' determined 
kinetically is significantly different from the thermodynamic 
constant pK3. The nonrate determining formation of an ad­
ditional intermediate after ionization of the M(0F£2) moiety 
would result in the apparent ionization constant (pK3') of the 
M-OH2 moiety of the complex being less than pK3.

7^ On the 
basis of Scheme I, k0bSa is given by eq 7. 
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k 

(1 + 
r^eq \ K: 

r Keq)laH + 
K3(\ + Keq) 

AT3(I +K,q) 
(7) 

From eq 7 it can be seen that AT3' of the complexed M(OF^) 
moiety is provided by K3(X + A"eq) and that k = krKeq/(l + 
Keq). The data in Figure 2 can be fitted to eq 7 using the 
thermodynamic pA"3 and kr = 1.05 min" 
Co2+, and kr = 0.6 min-1, Keq = 2.5 for !> 

According to Scheme I the value of ATalTO determined kine-

Keq = 14.5 for 

>-app ^ 

+ 

tically is given by eq 8 which may be compared to eq 5 which 
provides the value of Kapp determined from the titrimetric data. 

log ATapp = log Km - pH + log ( l + ^ + p ) 

log Z1 + £ ) _ l o g T1+
1MLM*)] (8) 

\ awl L aH J 
The fit of the experimental data to eq 8 is shown in Figure 2; 
Keq = 13.5 for Co2+ and 1.5 for Ni2+. The agreement between 
K1^ determined from eq 7 and 8 is reasonable. Examination 
of Stuardt and Breigleb models of metal complexes of I reveal 
that once complexation with the imidazole nitrogen and phe­
nolic hydroxyl occurs, it is not possible for the metal to coor­
dinate with the ester carbonyl. This taken in conjunction with 
the observed pH-rate profile which shows that ionization of 
the M-OH2 moiety is associated with catalysis eliminates 
metal ion activation of the carbonyl to intermolecular attack 
by OH - as a contributing factor in this model system. Catalysis 
and complexation both exhibit a degree of specificity for the 
metal ion. No detectable complexation or catalysis was ob­
served with Mg2+, Ca2+, or Mn2+. Zn2+ forms a catalytically 
inactive dimeric complex (I)2Zn, whereas, the 1:1 Cd2+ 

complex is catalytically inactive, perhaps due to steric re­
quirements. 

At pH values below pK3, intramolecular M-OH hydrolysis 
of I exceeds that for OH - mediated hydrolysis by 2 X 105 

(Co2+ complex) and 1.2 X 104 (Ni2+ complex). The specific 
rate constants for intramolecular catalysis by the M-OH 
moiety (KeqkT = 14.7 and 1.2 min-1 for Co2+ and Ni2+, re­
spectively) are ca. 103 less than the reported values of kcat for 
the hydrolysis of a good ester substrate by carboxypeptidase.9 

This rate ratio of 103 (ca. 4 kcal M - 1) is not large when taken 
with the fact that some distortion of the metal ion geometry 
is required in the model system10 in order to effect the for­
mation of the tetrahedral intermediate. Without this re­
quirement the intramolecular catalysis by M-OH may be 
expected to approach that of carboxypeptidase. 
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The Diphenylvinylene Carbonate-Diene Exciplex. 
Solvent Dependence of Radiative and Nonradiative 
Decay Processes 

Sir: 

There is growing evidence that excited state it complexes 
or exciplexes are intermediates in numerous photochemical 
cycloaddition reactions.1"4 Previous investigations of the ste-
reospecific „.2S + „-2s cycloaddition reactions of singlet trans-
stilbene and diphenylvinylene carbonate (V) with electron rich 
alkenes5 and dienes6 provided indirect evidence for exciplex 
intermediates. The high quantum yields (~1.0) for adduct 
formation in nonpolar solvents5a'b'6c'e seemed to preclude the 
observation of exciplex fluorescence. We now wish to report 
the observation of solvent sensitive exciplex fluorescence from 
singlet V and 2,5-dimethyl-2,4-hexadiene (D). The effect of 
solvent upon exciplex fluorescence, cycloaddition, and non-
radiative decay pathways provides important insights into the 
behavior of the exciplex intermediate. 

Quenching of the fluorescence of V7 is accompanied by the 
appearance of a new structureless emission at longer wave-
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